

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006 in seiner derzeit gültigen Fassung

Seite 1 von 21

SDB-Nr.: 229602

V006.1

überarbeitet am: 03.07.2024

Druckdatum: 01.08.2025

Ersetzt Version vom: 15.12.2023

LOCTITE SF 7063 known as Loctite 7063

ABSCHNITT 1: Bezeichnung des Stoffs bzw. des Gemischs und des Unternehmens

1.1. Produktidentifikator

LOCTITE SF 7063 known as Loctite 7063 UFI: VADX-4WF1-1201-089M

1.2. Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

Vorgesehene Verwendung:

Reiniger auf Lösemittelbasis

1.3. Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

Henkel & Cie. AG Adhesives Salinenstrasse 61 4133 Pratteln

Schweiz

Tel.: +41 (61) 825 70 00

SDSinfo.Adhesive@henkel.com

Aktualisierungen der Sicherheitsdatenblätter können auf unserer Internetseite abgerufen werden www.mysds.henkel.com oder www.henkel-adhesives.com.

1.4. Notrufnummer

Tox Info Suisse (24h / 7 Tage): +41 44 251 51 51 oder 145 (Schweiz und Liechtenstein).

ABSCHNITT 2: Mögliche Gefahren

2.1. Einstufung des Stoffs oder Gemischs

Einstufung (CLP):

Entzündbare Flüssigkeiten Kategorie 2

H225 Flüssigkeit und Dampf leicht entzündbar.

Reizwirkung auf die Haut Kategorie 2

H315 Verursacht Hautreizungen.

Spezifische Organ-Toxizität - bei einmaliger Exposition Kategorie 3

H336 Kann Schläfrigkeit und Benommenheit verursachen.

Zielorgan: Zentralnervensystem

Chronische aquatische Toxizität Kategorie 2

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.

2.2. Kennzeichnungselemente

Kennzeichnungselemente (CLP):

Gefahrenpiktogramm:

Enthält Kohlenwasserstoffe, C6-C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan

Signalwort: Gefahr

Gefahrenhinweis: H225 Flüssigkeit und Dampf leicht entzündbar.

H315 Verursacht Hautreizungen.

H336 Kann Schläfrigkeit und Benommenheit verursachen. H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.

Sicherheitshinweis: "***Nur für private Endverbraucher: P101 Ist ärztlicher Rat erforderlich,

Verpackung oder Kennzeichnungsetikett bereithalten. P102 Darf nicht in die Hände von Kindern gelangen. P501 Inhalt/Behälter gemäß nationalen Vorschriften der Entsorgung

zuführen.***

Sicherheitshinweis:

Prävention

P210 Von Hitze, heißen Oberflächen, Funken, offenen Flammen sowie anderen

Zündquellenarten fernhalten. Nicht rauchen. P261 Einatmen von Dampf vermeiden.

P273 Freisetzung in die Ûmwelt vermeiden.

Sicherheitshinweis:

Reaktion

P302+P352 BEI BERÜHRUNG MIT DER HAUT: Mit viel Wasser waschen.

Sicherheitshinweis:

Lagerung

P403+P235 An einem gut belüfteten Ort aufbewahren. Kühl halten

2.3. Sonstige Gefahren

Keine bei bestimmungsgemäßer Verwendung.

Folgende Substanzen sind in einer Konzentration ≥ der Konzentrationsgrenze für die Darstellung nach Abschnitt 3 vorhanden und erfüllen die Kriterien für PBT/vPvB, oder wurden als Endokrine Disruptoren (ED) identifiziert:

Dieses Gemisch enthält keine Substanzen in einer Konzentration ≥ der Konzentrationsgrenze für die Darstellung nach Abschnitt 3, die als PBT, vPvB oder ED eingestuft sind.

ABSCHNITT 3: Zusammensetzung/Angaben zu Bestandteilen

3.2. Gemische

Inhaltsstoffangabe gemäß CLP (EG) Nr 1272/2008:

Gefährliche Inhaltsstoffe CAS-Nr. EG-Nummer REACH-Reg. No.	Konzentration	Einstufung	Spezifische Konzentrationsgrenzwerte (SCL), M-Faktoren und ATE- Werte	Zusätzliche Informationen
Kohlenwasserstoffe, C6-C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan64742-49-0 921-024-6 01-2119475514-35	50- 100 %	Flam. Liq. 2, H225 Asp. Tox. 1, H304 Skin Irrit. 2, H315 STOT SE 3, H336 Aquatic Chronic 2, H411		
Ethanol 64-17-5 200-578-6 01-2119457610-43	20- 40 %	Eye Irrit. 2, H319 Flam. Liq. 2, H225	Eye Irrit. 2; H319; C >= 50 %	
Dimethoxymethan 109-87-5 203-714-2 01-2119664781-31	10- 20 %	Flam. Liq. 2, H225		
Cyclohexan 110-82-7 203-806-2 01-2119463273-41	5- < 10 %	Asp. Tox. 1, H304 STOT SE 3, H336 Aquatic Acute 1, H400 Aquatic Chronic 1, H410 Flam. Liq. 2, H225 Skin Irrit. 2, H315	M acute = 1 M chronic = 1	EU OEL
Propan-2-ol 67-63-0 200-661-7 01-2119457558-25	1-< 5%	Flam. Liq. 2, H225 Eye Irrit. 2, H319 STOT SE 3, H336		
n-Hexan 110-54-3 203-777-6 01-2119480412-44	1-< 3 %	Flam. Liq. 2, H225 Repr. 2, H361f Asp. Tox. 1, H304 STOT RE 2, H373 Skin Irrit. 2, H315 STOT SE 3, H336 Aquatic Chronic 2, H411	STOT RE 2; H373; C >= 5 %	EU OEL

Wenn keine ATE-Werte angegeben sind, beziehen Sie sich bitte auf die LD/LC50-Werte in Abschnitt 11. Vollständiger Wortlaut der H-Sätze und anderer Abkürzungen siehe Kapitel 16 'Sonstige Angaben'. Inhaltsstoffangabe gemäß Detergenzienverordnung 648/2004/EG

> 30 %

aliphatische Kohlenwasserstoffe

ABSCHNITT 4: Erste-Hilfe-Maßnahmen

4.1. Beschreibung der Erste-Hilfe-Maßnahmen

Einatmen:

Patienten an die frische Luft bringen. Bei länger anhaltenden Beschwerden Arzt konsultieren.

Hautkontakt:

Spülung mit fließendem Wasser und Seife.

Bei anhaltender Reizung ärztlichen Rat einholen.

Augenkontakt:

Sofortige Spülung unter fließendem Wasser (10 Minuten lang), Facharzt aufsuchen.

Verschlucken:

Spülung der Mundhöhle, trinken von 1-2 Gläsern Wasser, kein Erbrechen auslösen, Arzt konsultieren.

4.2. Wichtigste akute und verzögert auftretende Symptome und Wirkungen

Haut: Rötung, Entzündung.

Dämpfe können Schläfrigkeit und Benommenheit verursachen.

Wiederholter oder länger anhaltender Kontakt mit den Augen kann zu Augenreizung führen.

4.3. Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung

Siehe Kapitel: Beschreibung der Erste-Hilfe-Maßnahmen

ABSCHNITT 5: Maßnahmen zur Brandbekämpfung

5.1. Löschmittel

Geeignete Löschmittel:

Schaum, Löschpulver, Kohlendioxid.

5.2. Besondere vom Stoff oder Gemisch ausgehende Gefahren

Dämpfe können in niedrigen oder eingeschlossenen Bereichen akkumulieren, erhebliche Strecken bis zu einer Zündquelle wandern und zu Flammenrückschlag führen.

Kohlenstoffoxide, Stickstoffoxide, reizende organische Dämpfe.

5.3. Hinweise für die Brandbekämpfung

Umgebungsluftunabhängigen Atemschutz tragen.

Zusätzliche Hinweise:

Im Brandfall gefährdete Behälter mit Spritzwasser kühlen.

ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung

6.1. Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen anzuwendende Verfahren

Zündquellen entfernen.

Für ausreichende Be- und Entlüftung sorgen.

6.2. Umweltschutzmaßnahmen

Nicht in die Kanalisation gelangen lassen.

6.3. Methoden und Material für Rückhaltung und Reinigung

Mit saugfähigem Material aufnehmen.

Bis zur Entsorgung in einem teilweise gefüllten, geschlossenen Behälter aufbewahren.

Kontaminiertes Material als Abfall nach Absch. 13 entsorgen.

6.4. Verweis auf andere Abschnitte

Hinweise in Abschnitt 8 beachten

ABSCHNITT 7: Handhabung und Lagerung

7.1. Schutzmaßnahmen zur sicheren Handhabung

Von Zündquellen fernhalten. - Nicht rauchen.

Dämpfe sollten abgesaugt werden, um ein Einatmen zu vermeiden

Nur in gut belüfteten Räumen verwenden.

Augenkontakt und Hautkontakt vermeiden.

Hinweise in Abschnitt 8 beachten

Hygienemaßnahmen:

Vor den Pausen und nach Arbeitsende Hände waschen.

Bei der Arbeit nicht essen, trinken oder rauchen.

Gute industrielle Hygienebedingungen sind einzuhalten

Bei der Auswahl der persönlichen Schutzausrüstung (PSA) müssen die Vorschriften der Schweizer

Arbeitnehmerschutzgesetzgebung eingehalten werden.

7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten

Kühl und trocken lagern.

Nicht in d.Nähe v.Hitzequellen, Zündquellen oder reaktivem Material lagern. entsprechend dem techn. Datenblatt.

7.3. Spezifische Endanwendungen

Reiniger auf Lösemittelbasis

ABSCHNITT 8: Begrenzung und Überwachung der Exposition/Persönliche Schutzausrüstungen

8.1. Zu überwachende Parameter

Arbeitsplatzgrenzwerte

Gültig für Schweiz

Inhaltstsoff [Regulierte Stoffgruppe]	ppm	mg/m³	Werttyp	Kategorie Kurzzeitwert / Bemerkungen	Gesetzliche Liste
Ethanol 64-17-5 [Ethanol]	500	960	Maximale Arbeitsplatzkonzentrations wert		SMAK
Ethanol 64-17-5 [Ethanol]	1.000	1.920	Kurzzeitgrenzwerte		SMAK
Ethanol 64-17-5 [Ethanol]				Ein Risiko der Fruchtschädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden.	SMAK
Dimethoxymethan 109-87-5 [Dimethoxymethan]				Ein Risiko der Fruchtschädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden.	SMAK
Dimethoxymethan 109-87-5 [Dimethoxymethan]	1.000	3.100	Maximale Arbeitsplatzkonzentrations wert		SMAK
Dimethoxymethan 109-87-5 [Dimethoxymethan]	2.000	6.200	Kurzzeitgrenzwerte		SMAK
Cyclohexan 110-82-7 [Cyclohexan]	800	2.800	Kurzzeitgrenzwerte		SMAK
Cyclohexan 110-82-7 [Cyclohexan]	200	700	Maximale Arbeitsplatzkonzentrations wert		SMAK
Hexan 110-54-3 [n-Hexan]	50	180	Maximale Arbeitsplatzkonzentrations wert		SMAK
Hexan 110-54-3 [n-Hexan]			Hautbezeichnung:	Hautresorptiv	SMAK
Hexan 110-54-3 [n-Hexan]	400	1.440	Kurzzeitgrenzwerte		SMAK
Hexan 110-54-3 [n-Hexan]				Ein Risiko der Fruchtschädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden.	SMAK

Predicted No-Effect Concentration (PNEC):

Name aus Liste Umweltkompa Exposition Wert rtiment szeit						Bemerkungen	
			mg/l	ppm	mg/kg	andere	
Ethanol	Süsswasser		0,96 mg/l				
64-17-5							
Ethanol	Salzwasser		0,79 mg/l				
64-17-5							
Ethanol	Wasser		2,75 mg/l				
64-17-5	(zeitweilige						
	Freisetzung)						
Ethanol	Kläranlage		580 mg/l				
64-17-5							
Ethanol	Sediment				3,6 mg/kg		
64-17-5	(Süsswasser)						
Ethanol	Sediment				2,9 mg/kg		
64-17-5	(Salzwasser)						
Ethanol	Boden				0,63 mg/kg		
64-17-5							
Ethanol	oral				380 mg/kg		
64-17-5							
Dimethoxymethan	Süsswasser		14,577				
109-87-5			mg/l				
Dimethoxymethan	Salzwasser		1,4577		1		
109-87-5			mg/l				
Dimethoxymethan	Sediment				13,135		
109-87-5	(Süsswasser)				mg/kg		
Dimethoxymethan	Sediment				1,3135		
109-87-5	(Salzwasser)				mg/kg		
Dimethoxymethan	Boden				4,6538		
109-87-5					mg/kg		
Dimethoxymethan	Kläranlage		10000 mg/l				
109-87-5	5		8				
Cyclohexan	Süsswasser		0,207 mg/l				
110-82-7			1,20, 11,81				
Cyclohexan	Salzwasser		0,207 mg/l				
110-82-7			1,20, 11,81				
Cyclohexan	Wasser		0,207 mg/l				
110-82-7	(zeitweilige		0,207 mg/1				
	Freisetzung)						
Cyclohexan	Sediment				16,68		
110-82-7	(Süsswasser)				mg/kg		
Cyclohexan	Sediment				16,68		
110-82-7	(Salzwasser)				mg/kg		
Cyclohexan	Boden				3,38 mg/kg		
110-82-7	Boden				5,50 mg kg		
Cyclohexan	Kläranlage		3,24 mg/l				
110-82-7	TILL UILLUG		5,2 · mg ·				
Cyclohexan	Luft						
110-82-7							
Cyclohexan	Raubtier						kein Potenzial für
110-82-7	Taustier						Bioakkumulation
Propan-2-ol	Süsswasser		140,9 mg/l				Brewitten with the second
67-63-0	5 455 W 455C1		110,7 111g/1				
Propan-2-ol	Salzwasser	1	140,9 mg/l				
67-63-0	Suizwassei		140,7 mg/1				
Propan-2-ol	Sediment	1	1		552 mg/kg		
67-63-0	(Süsswasser)				JJ2 mg/kg		
Propan-2-ol	Sediment	1	1		552 mg/kg		
67-63-0	(Salzwasser)				JJZ mg/kg		
Propan-2-ol	Boden	1	1	 	28 mg/kg		1
67-63-0	Bodeli				20 mg/kg		
Propan-2-ol	Wasser	1	140,9 mg/l	 	+		1
67-63-0	(zeitweilige		170,7 IIIg/I		1		
07-03-0	Freisetzung)						
Propan-2-ol	Kläranlage	1	2251 mg/l				
67-63-0	Kiaraniage		2231 Hig/1				
Propan-2-ol	0.001	1	1		160		
F10pan-2-01	oral				160 mg/kg		
67-63-0		I	I	<u> </u>	1		

Derived No-Effect Level (DNEL):

Arbeitnehmer Arbeitnehmer Breite Öffentlichkeit	Inhalation dermal	Langfristige Exposition - systemische Effekte Langfristige Exposition -		2035 mg/m3	
Breite				1	
		systemische Effekte		773 mg/kg	
	Inhalation	Langfristige Exposition - systemische Effekte		608 mg/m3	
Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte		699 mg/kg	
Breite Öffentlichkeit	oral	Langfristige Exposition - systemische Effekte		699 mg/kg	
Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte		343 mg/kg	
Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte		950 mg/m3	
Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte		206 mg/kg	
Breite Öffentlichkeit	Inhalation	Langfristige Exposition - systemische Effekte		114 mg/m3	
Breite Öffentlichkeit	oral	Langfristige Exposition - systemische Effekte		87 mg/kg	
Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte		17,9 mg/kg	
Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte		126,6 mg/m3	
Breite Öffentlichkeit	oral	Langfristige Exposition - systemische		18,1 mg/kg	
Breite Öffentlichkeit	Inhalation	Langfristige Exposition - systemische Effekte		31,5 mg/m3	
Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte		18,1 mg/kg	
Arbeitnehmer	Inhalation	Akute/kurzfristige Exposition - lokale Effekte		700 mg/m3	kein Potenzial für Bioakkumulation
Arbeitnehmer	Inhalation	Exposition - systemische Effekte		700 mg/m3	kein Potenzial für Bioakkumulation
Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte		700 mg/m3	kein Potenzial für Bioakkumulation
	Breite Öffentlichkeit Arbeitnehmer Breite Öffentlichkeit Breite Öffentlichkeit Breite Öffentlichkeit Arbeitnehmer Arbeitnehmer Breite Öffentlichkeit Breite Öffentlichkeit Arbeitnehmer Arbeitnehmer Arbeitnehmer Arbeitnehmer Arbeitnehmer	Breite Öffentlichkeit Arbeitnehmer dermal Arbeitnehmer Inhalation Breite Öffentlichkeit Breite Öffentlichkeit Breite Öffentlichkeit Arbeitnehmer dermal Arbeitnehmer Inhalation Breite Öffentlichkeit Arbeitnehmer Inhalation Breite Öffentlichkeit Breite Öffentlichkeit Breite Öffentlichkeit Arbeitnehmer Inhalation Arbeitnehmer Inhalation Arbeitnehmer Inhalation Arbeitnehmer Inhalation Arbeitnehmer Inhalation	Breite Öffentlichkeit Öffentlichkeit Öffentlichkeit Breite Öffentlichkeit Arbeitnehmer Arbeitnehmer Breite Öffentlichkeit Arbeitnehmer Breite Öffentlichkeit Arbeitnehmer Breite Breite Arbeitnehmer Breite Breite Öffentlichkeit Breite Arbeitnehmer Arbeitnehmer Breite Breite Öffentlichkeit Breite Br	Breite Öffentlichkeit Breite Öffentlichkeit Breite Öffentlichkeit Breite Öffentlichkeit Arbeitnehmer Arbeitnehmer Breite Öffentlichkeit Arbeitnehmer Arbeitnehmer Breite Öffentlichkeit Breite Öffentlichkeit Arbeitnehmer Inhalation Breite Öffentlichkeit Breite Öffentlichkeit Arbeitnehmer Inhalation Breite Öffentlichkeit Breite Br	Breite Öffentlichkeit systemische Effekte Exposition - systemische Effekte Effekte Effekte Effekte Effekte Effekte Exposition - systemische Effekte Exposition - systemische Effekte Effekte Effekte Exposition - systemische Effekte Exposition - systemische Effekte Effekte Exposition - systemische Effekte Effekte Exposition - systemische Effekte Exposition - systemische Effekte

110-82-7			Exposition - lokale Effekte		Bioakkumulation
Cyclohexan 110-82-7	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte	2016 mg/kg	kein Potenzial für Bioakkumulation
Cyclohexan 110-82-7	Breite Öffentlichkeit	Inhalation	Akute/kurzfristige Exposition - systemische Effekte	412 mg/m3	kein Potenzial für Bioakkumulation
Cyclohexan 110-82-7	Breite Öffentlichkeit	Inhalation	Akute/kurzfristige Exposition - lokale Effekte	412 mg/m3	kein Potenzial für Bioakkumulation
Cyclohexan 110-82-7	Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte	1186 mg/kg	kein Potenzial für Bioakkumulation
Cyclohexan 110-82-7	Breite Öffentlichkeit	oral	Langfristige Exposition - systemische Effekte	59,4 mg/kg	kein Potenzial für Bioakkumulation
Cyclohexan 110-82-7	Breite Öffentlichkeit	Inhalation	Langfristige Exposition - systemische Effekte	206 mg/m3	kein Potenzial für Bioakkumulation
Cyclohexan 110-82-7	Breite Öffentlichkeit	Inhalation	Langfristige Exposition - lokale Effekte	206 mg/m3	kein Potenzial für Bioakkumulation
Propan-2-ol 67-63-0	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte	888 mg/kg	
Propan-2-ol 67-63-0	Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte	500 mg/m3	
Propan-2-ol 67-63-0	Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte	319 mg/kg	
Propan-2-ol 67-63-0	Breite Öffentlichkeit	Inhalation	Langfristige Exposition - systemische Effekte	89 mg/m3	
Propan-2-ol 67-63-0	Breite Öffentlichkeit	oral	Langfristige Exposition - systemische Effekte	26 mg/kg	
Hexan 110-54-3	Breite Öffentlichkeit	Inhalation	Langfristige Exposition - systemische Effekte	16 mg/m3	
Hexan 110-54-3	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte	11 mg/kg	
Hexan 110-54-3	Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte	5,3 mg/kg	
Hexan 110-54-3	Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte	75 mg/m3	
Hexan 110-54-3	Breite Öffentlichkeit	oral	Langfristige Exposition - systemische Effekte	4 mg/kg	

Biologischer Grenzwert (BGW):

Inhaltstsoff [Regulierte Stoffgruppe]	Parameter	Untersuchungs material	Probenahmezeitpunkt		Grundlage des Grenzwertes	Bemerkung	Zusatzinformation
Hexan 110-54-3 [N-HEXAN]	2,5- Hexandion plus 4,5- Dihydroxy-2- hexanon	Urin	Probennahmezeitpunkt: Expositionsende, bzw. Schichtende	5 mg/l	СН ВАТ	Nicht spezifischer Parameter	
Propan-2-ol 67-63-0 [2-PROPANOL]	Aceton	Urin	Probennahmezeitpunkt: Expositionsende, bzw. Schichtende	25 mg/l	CH BAT		
Propan-2-ol 67-63-0 [2-PROPANOL]	Aceton	Blut	Probennahmezeitpunkt: Expositionsende, bzw. Schichtende	25 mg/l	CH BAT		

8.2. Begrenzung und Überwachung der Exposition:

Hinweise zur Gestaltung technischer Anlagen:

Für gute Be- und Entlüftung sorgen.

Atemschutz:

Eine zugelassene Atemschutzmaske bzwAtemschutzgerät mit geeigneter Kartusche für organische Dämpfe sollte getragen werden, wenn das Produkt in einer schlecht belüfteten Umgebung verwendet wird

Für ausreichende Be- und Entlüftung sorgen.

Filtertyp: A (EN 14387)

Handschutz:

Chemikalienbeständige Schutzhandschuhe (EN 374).

Geeignete Materialen bei kurzfristigem Kontakt bzw. Spritzern (Empfohlen: Mindestens Schutzindex 2, entsprechend > 30 Minuten Permeationszeit nach EN 374):

Nitrilkautschuk (NBR; >= 0,4 mm Schichtdicke)

Geeignete Materialien auch bei längerem, direktem Kontakt (Empfohlen: Schutzindex 6, entsprechend > 480 Minuten Permeationszeit nach EN 374):

Nitrilkautschuk (NBR; >= 0,4 mm Schichtdicke)

Die Angaben basieren auf Literaturangaben und Informationen von Handschuhherstellern oder sind durch Analogieschluß von ähnlichen Stoffen abgeleitet. Es ist zu beachten, dass die Gebrauchsdauer eines Chemikalienschutzhandschuhs in der Praxis auf Grund der vielen Einflußfaktoren (z.B. Temperatur) deutlich kürzer als die nach EN 374 ermittelte Permeationszeit sein kann. Bei Abnutzungserscheinungen ist der Handschuh zu wechseln.

Augenschutz:

Zum Schutz gegen mögliche Spritzer sollte eine Schutzbrille mit Seitenschildern oder eine dichtschließende Chemikalien-Schutzbrille.

Der Augenschutz sollte konform zur EN 166 sein.

Körperschutz:

Bei der Arbeit geeignete Schutzkleidung tragen.

Die Schutzkleidung sollte konform zur EN 14605 für Flüssigkeitsspritzer oder zur EN 13982 für Stäube sein.

Hinweise zu persönlicher Schutzausrüstung:

Bei der Auswahl der persönlichen Schutzausrüstung (PSA) müssen die Vorschriften der Schweizer Arbeitnehmerschutzgesetzgebung eingehalten werden.

Die Informationen zur vorgeschlagenen persönlichen Schutzausrüstungen haben nur eine beratende Funktion. Eine vollständige Risikoabschätzung sollte vor der Verwendung des Produktes durchgeführt werden, um einzuschätzen, ob sich die angezeigten persönlichen Schutzausrüstungen für die örtlichen Gegebenheiten eignen. Die persönliche Schutzausrüstung sollte konform zu den maßgeblichen EU-Standards sein.

ABSCHNITT 9: Physikalische und chemische Eigenschaften

9.1. Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Aggregatzustand flüssig
Lieferform Flüssigkeit
Farbe farblos
Geruch nach

Kohlenwasserstoff

en

Schmelzpunkt Nicht anwendbar, Produkt ist eine Flüssigkeit

Erstarrungstemperatur -75 °C (-103 °F)
Siedebeginn 78 °C (172.4 °F)keine
Entzündbarkeit brennbare Flüssigkeit

Explosionsgrenzen

untere 0.8 %(V); obere 15 %(V);

Flammpunkt -18 °C (0.4 °F) Selbstentzündungstemperatur 200 °C (392 °F)

Zersetzungstemperatur Nicht anwendbar, Stoff/Gemisch ist nicht selbstreagierend,

kein organisches Peroxid und zersetzt sich nicht unter den

vorgesehenen Verwendungsbedingungen

pH-Wert Nicht anwendbar, Das Produkt ist in Wasser unlöslich

Viskosität (kinematisch) 0,43 mm2/s

(20 °C (68 °F);)

Viskosität (kinematisch) < 20,5 mm2/s

(40 °C (104 °F);) Löslichkeit qualitativ

t qualitativ unlöslich

(20 °C (68 °F); Lsm.: Wasser)

Löslichkeit qualitativ mischbar

(20 °C (68 °F); Lsm.: Aceton)

Verteilungskoeffizient: n-Octanol/Wasser Nicht anwendbar

Gemisch

Dampfdruck 440 hPa

(20 °C (68 °F))

Dampfdruck 246 hPa

(50 °C (122 °F))

Dichte 0,749 g/cm3 keine

(20 °C (68 °F))

Relative Dampfdichte: > 1

(20 °C)

Partikeleigenschaften Nicht anwendbar

Produkt ist eine Flüssigkeit

9.2. Sonstige Angaben

Weitere Informationen treffen nicht auf dieses Produkt zu

ABSCHNITT 10: Stabilität und Reaktivität

10.1. Reaktivität

Starke Oxidationsmittel.

10.2. Chemische Stabilität

Stabil unter angegebenen Lagerungsbedingungen.

10.3. Möglichkeit gefährlicher Reaktionen

Siehe Abschnitt Reaktivität

10.4. Zu vermeidende Bedingungen

Unter normalen Lagerungs- und Anwendungsbedingungen stabil. Hitze, Flammen, Funken und andere Zündquellen fernhalten.

10.5. Unverträgliche Materialien

Siehe Abschnitt Reaktivität.

10.6. Gefährliche Zersetzungsprodukte

Keine bekannt bei bestimmungsgemäßer Verwendung.

ABSCHNITT 11: Toxikologische Angaben

Allgemeine Angaben zur Toxikologie:

Wiederholter oder länger anhaltender Kontakt mit den Augen kann zu Augenreizung führen.

11.1 Angaben zu den Gefahrenklassen im Sinne der Verordnung (EG) Nr. 1272/2008

Akute orale Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Spezies	Methode
Kohlenwasserstoffe, C6- C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	LD50	> 5.840 mg/kg	Ratte	nicht spezifiziert
Ethanol 64-17-5	LD50	10.470 mg/kg	Ratte	OECD Guideline 401 (Acute Oral Toxicity)
Dimethoxymethan 109-87-5	LD50	6.423 mg/kg	Ratte	OECD Guideline 423 (Acute Oral toxicity)
Cyclohexan 110-82-7	LD50	> 5.000 mg/kg	Ratte	equivalent or similar to OECD Guideline 401 (Acute Oral Toxicity)
Propan-2-ol 67-63-0	LD50	5.840 mg/kg	Ratte	equivalent or similar to OECD Guideline 401 (Acute Oral Toxicity)
n-Hexan 110-54-3	LD50	16.000 mg/kg	Ratte	OECD Guideline 401 (Acute Oral Toxicity)

Akute dermale Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Spezies	Methode
Kohlenwasserstoffe, C6- C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	LD50	> 2.800 mg/kg	Ratte	nicht spezifiziert
Ethanol 64-17-5	LD50	> 2.000 mg/kg	Kaninchen	OECD Guideline 402 (Acute Dermal Toxicity)
Dimethoxymethan 109-87-5	LD50	> 5.000 mg/kg	Kaninchen	OECD Guideline 402 (Acute Dermal Toxicity)
Cyclohexan 110-82-7	LD50	> 2.000 mg/kg	Kaninchen	equivalent or similar to OECD Guideline 402 (Acute Dermal Toxicity)
Propan-2-ol 67-63-0	LD50	12.870 mg/kg	Kaninchen	OECD Guideline 402 (Acute Dermal Toxicity)
n-Hexan 110-54-3	LD50	> 2.000 mg/kg	Kaninchen	nicht spezifiziert

Akute inhalative Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Testatmosph re	Expositio nsdauer	Spezies	Methode
Kohlenwasserstoffe, C6- C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	LC50	> 25,2 mg/l	Dampf	4 h	Ratte	nicht spezifiziert
Ethanol 64-17-5	LC50	124,7 mg/l	Dampf	4 h	Ratte	OECD Guideline 403 (Acute Inhalation Toxicity)
Dimethoxymethan 109-87-5	LC50	15.000 mg/l	Dampf	4 h	Ratte	nicht spezifiziert
Cyclohexan 110-82-7	LC50	> 32,880 mg/l	Dampf	4 h	Ratte	equivalent or similar to OECD Guideline 403 (Acute Inhalation Toxicity)
n-Hexan 110-54-3	LC50	> 31,86 mg/l	Dampf	4 h	Ratte	nicht spezifiziert

Ätz-/Reizwirkung auf die Haut:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Expositio nsdauer	Spezies	Methode
Kohlenwasserstoffe, C6- C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	reizend	4 h	Kaninchen	equivalent or similar to OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
Ethanol 64-17-5	nicht reizend		Kaninchen	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
Cyclohexan 110-82-7	reizend		Kaninchen	Weight of evidence
Propan-2-ol 67-63-0	leicht reizend	4 h	Kaninchen	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
n-Hexan 110-54-3	nicht reizend		Kaninchen	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)

Schwere Augenschädigung/-reizung:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Expositio nsdauer	Spezies	Methode
Ethanol 64-17-5	reizend		Kaninchen	OECD Guideline 405 (Acute Eye Irritation / Corrosion)
Cyclohexan 110-82-7	leicht reizend		Kaninchen	equivalent or similar to OECD Guideline 405 (Acute Eye Irritation / Corrosion)
Propan-2-ol 67-63-0	Category II		Kaninchen	equivalent or similar to OECD Guideline 405 (Acute Eye Irritation / Corrosion)
n-Hexan 110-54-3	nicht reizend		Kaninchen	nicht spezifiziert

Sensibilisierung der Atemwege/Haut:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Ergebnis	Testtyp	Spezies	Methode
CAS-Nr.				
Ethanol	nicht	Meerschweinchen	Meerschweinc	OECD Guideline 406 (Skin Sensitisation)
64-17-5	sensibilisierend	Maximierungstest	hen	
Ethanol	nicht	locales Maus-Lymphnode	Maus	OECD Guideline 429 (Skin Sensitisation:
64-17-5	sensibilisierend	Muster		Local Lymph Node Assay)
Cyclohexan	nicht	Buehler test	Meerschweinc	equivalent or similar to OECD Guideline
110-82-7	sensibilisierend		hen	406 (Skin Sensitisation)
Propan-2-ol	nicht	Buehler test	Meerschweinc	OECD Guideline 406 (Skin Sensitisation)
67-63-0	sensibilisierend		hen	·
n-Hexan	nicht	locales Maus-Lymphnode	Maus	OECD Guideline 429 (Skin Sensitisation:
110-54-3	sensibilisierend	Muster		Local Lymph Node Assay)

Keimzell-Mutagenität:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Studientyp / Verabreichungsro ute	Metabolische Aktivierung/ Expositionszeit	Spezies	Methode
Ethanol 64-17-5	negativ	bacterial reverse mutation assay (e.g Ames test)			OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Ethanol 64-17-5	negativ	in vitro Säugetierchromoso nen Anomalien- Test	ohne		OECD Guideline 473 (In vitro Mammalian Chromosome Aberration Test)
Ethanol 64-17-5	negativ	Säugetierzell- Genmutationsmuste r	mit und ohne		OECD Guideline 476 (In vitro Mammalian Cell Gene Mutation Test)
Cyclohexan 110-82-7	negativ	bacterial reverse mutation assay (e.g Ames test)	mit und ohne		equivalent or similar to OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Cyclohexan 110-82-7	negativ	Säugetierzell- Genmutationsmuste r	mit und ohne		equivalent or similar to OECD Guideline 476 (In vitro Mammalian Cell Gene Mutation Test)
Propan-2-ol 67-63-0	negativ	bacterial reverse mutation assay (e.g Ames test)	mit und ohne		equivalent or similar to OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Propan-2-ol 67-63-0	negativ	Säugetierzell- Genmutationsmuste r	mit und ohne		equivalent or similar to OECD Guideline 476 (In vitro Mammalian Cell Gene Mutation Test)
n-Hexan 110-54-3	negativ	bacterial reverse mutation assay (e.g Ames test)	mit und ohne		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
n-Hexan 110-54-3	negativ	Säugetierzell- Genmutationsmuste r	mit und ohne		OECD Guideline 476 (In vitro Mammalian Cell Gene Mutation Test)
Ethanol 64-17-5	negativ				OECD Guideline 475 (Mammalian Bone Marrow Chromosome Aberration Test)
Cyclohexan 110-82-7	negativ	Inhalation: Dampf		Ratte	equivalent or similar to OECD Guideline 475 (Mammalian Bone Marrow Chromosome Aberration Test)
Propan-2-ol 67-63-0	negativ	Intraperitoneal		Maus	equivalent or similar to OECD Guideline 474 (Mammalian Erythrocyte Micronucleus Test)
n-Hexan 110-54-3	negativ	Inhalation: Dampf		Maus	nicht spezifiziert
n-Hexan 110-54-3	negativ	Inhalation: Dampf		Ratte	nicht spezifiziert

Karzinogenität

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Aufnahmeweg	Expositions dauer / Häufigkeit der Behandlung	Spezies	Geschlecht	Methode
Ethanol	nicht					Expertenbewertung
64-17-5	krebserzeugend					
Propan-2-ol		Inhalation:	104 w	Ratte	männlich /	OECD Guideline 451
67-63-0		Dampf	6 h/d, 5 d/w		weiblich	(Carcinogenicity Studies)
n-Hexan	nicht	Inhalation:	2 y	Maus	weiblich	OECD Guideline 451
110-54-3	krebserzeugend	Dampf	6 h/d; 5 d/w			(Carcinogenicity Studies)

Reproduktionstoxizität:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis / Wert	Testtyp	Aufnahmew eg	Spezies	Methode
Ethanol 64-17-5	NOAEL P 13.800 mg/kg	2- Generatione n-Studie	oral: nicht spezifiziert	Maus	OECD Guideline 416 (Two- Generation Reproduction Toxicity Study)
Cyclohexan 110-82-7	NOAEL F1 7000 ppm	Zwei- Generatione n-Studie	Inhalation: Dampf	Ratte	equivalent or similar to OECD Guideline 416 (Two- Generation Reproduction Toxicity Study)
Propan-2-ol 67-63-0	NOAEL P 853 mg/kg	1- Generatione n-Studie	oral: Trinkwasser	Ratte	equivalent or similar to OECD Guideline 415 (One- Generation Reproduction Toxicity Study)
Propan-2-ol 67-63-0	NOAEL P 500 mg/kg NOAEL F1 1.000 mg/kg	2- Generatione n-Studie	oral über eine Sonde	Ratte	equivalent or similar to OECD Guideline 416 (Two- Generation Reproduction Toxicity Study)
n-Hexan 110-54-3	NOAEL P 9000 ppm NOAEL F1 3000 ppm NOAEL F2 3000 ppm	2- Generatione n-Studie	Inhalation: Dampf	Ratte	OECD Guideline 416 (Two-Generation Reproduction Toxicity Study)

Spezifische Zielorgan-Toxizität bei einmaliger Exposition:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Beurteilung	Expositions	Zielorgane	Bemerkungen
CAS-Nr.		weg		
Kohlenwasserstoffe, C6- C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	Kategorie 3 mit narkotisierender Wirkung.			
Cyclohexan 110-82-7	Kategorie 3 mit narkotisierender Wirkung.			

Spezifische Zielorgan-Toxizität bei wiederholter Exposition:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Ergebnis / Wert	Aufnahmew	Expositionsdauer /	Spezies	Methode
CAS-Nr.		eg	Frequenz der		
			Anwendungen		
Cyclohexan		Inhalation:	13-14 w	Maus	EPA OPPTS 870.3465
110-82-7		Dampf	6 h/d, 5 d/w		(90-Day Inhalation
					Toxicity)
Propan-2-ol		Inhalation:	104 w	Ratte	OECD Guideline 451
67-63-0		Dampf	6 h/d, 5 d/w		(Carcinogenicity Studies)
n-Hexan	NOAEL 568 mg/kg	oral über	90 d	Ratte	nicht spezifiziert
110-54-3		eine Sonde	5 d/w		_
n-Hexan	NOAEL 500 ppm	Inhalation:	90 d	Maus	OECD Guideline 413
110-54-3		Dampf	6 h/d; 5 d/w		(Subchronic Inhalation
					Toxicity: 90-Day)

Aspirationsgefahr:

Das Gemisch ist basierend auf Daten für Viskosität eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Viskosität (kinematisch) Wert	Temperatur	Methode	Bemerkungen
Kohlenwasserstoffe, C6- C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	0,61 mm2/s	25 °C	nicht spezifiziert	
Cyclohexan 110-82-7	0,41 mm2/s	40 °C	nicht spezifiziert	
Propan-2-ol 67-63-0	1,8 mm2/s	40 °C	ASTM Standard D7042	
n-Hexan 110-54-3	0,45 mm2/s	25 °C	nicht spezifiziert	

11.2 Angaben über sonstige Gefahren

Keine Daten vorhanden

ABSCHNITT 12: Umweltbezogene Angaben

Allgemeine Angaben zur Ökologie:

Nicht in die Kanalisation / Oberflächenwasser / Grundwasser gelangen lassen.

12.1. Toxizität

Toxizität (Fisch):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Expositionsdau	Spezies	Methode
CAS-Nr.			er		
Kohlenwasserstoffe, C6-C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	LL50	11,4 mg/l	96 h	Oncorhynchus mykiss	OECD Guideline 203 (Fish, Acute Toxicity Test)
Ethanol	LC50	14.200 mg/l	96 h	Pimephales promelas	EPA-660 (Methods for
64-17-5					Acute Toxicity Tests with Fish, Macroinvertebrates and Amphibians)
Ethanol 64-17-5	NOEC	250 mg/l	120 h	Danio rerio	OECD Guideline 212 (Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages)
Dimethoxymethan 109-87-5	LC50	6.990 mg/l	96 h	Pimephales promelas	OECD Guideline 203 (Fish, Acute Toxicity Test)
Cyclohexan 110-82-7	LC50	4,53 mg/l	96 h	Pimephales promelas	OECD Guideline 203 (Fish, Acute Toxicity Test)
Propan-2-ol 67-63-0	LC50	> 9.640 - 10.000 mg/l	96 h	Pimephales promelas	OECD Guideline 203 (Fish, Acute Toxicity Test)
n-Hexan 110-54-3	LC50	> 1 - 10 mg/l	96 h	nicht spezifiziert	OECD Guideline 203 (Fish, Acute Toxicity Test)

Toxizität (wirbellose Wassertiere):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Expositionsdau	Spezies	Methode
CAS-Nr.			er		
Kohlenwasserstoffe, C6-C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	EL50	3 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
Ethanol 64-17-5	EC50	5.012 mg/l	48 h	Ceriodaphnia dubia	weitere Richtlinien:
Dimethoxymethan 109-87-5	EC50	> 500 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
Cyclohexan 110-82-7	EC50	0,9 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
n-Hexan 110-54-3	EC50	2,1 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)

Chronische Toxizität (wirbellose Wassertiere):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Expositionsdau Sp	pezies	Methode
---------------------------	---------	------	-------------------	--------	---------

CAS-Nr.			er		
Kohlenwasserstoffe, C6-C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	NOEC	0,17 mg/l	21 d	1 2	OECD 211 (Daphnia magna, Reproduction Test)
Ethanol 64-17-5	NOEC	9,6 mg/l	9 d	Daphnia magna	nicht spezifiziert
Propan-2-ol 67-63-0	NOEC	30 mg/l	21 d		OECD 211 (Daphnia magna, Reproduction Test)

Toxizität (Algea):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Expositionsdau er	Spezies	Methode
Kohlenwasserstoffe, C6-C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	EL50	> 30 - 100 mg/l	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
Kohlenwasserstoffe, C6-C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	NOELR	3 mg/l	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
Ethanol 64-17-5	EC50	275 mg/l	72 h	Chlorella vulgaris	OECD Guideline 201 (Alga, Growth Inhibition Test)
Ethanol 64-17-5	EC10	11,5 mg/l	72 h	Chlorella vulgaris	OECD Guideline 201 (Alga, Growth Inhibition Test)
Dimethoxymethan 109-87-5	EC10	> 500 mg/l	96 h	Scenedesmus subspicatus (new name: Desmodesmus subspicatus)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Cyclohexan 110-82-7	EC50	9,317 mg/l	72 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Cyclohexan 110-82-7	NOEC	0,95 mg/l	72 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Propan-2-ol 67-63-0	EC50	> 1.000 mg/l	96 h	Scenedesmus subspicatus (new name: Desmodesmus subspicatus)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Propan-2-ol 67-63-0	NOEC	1.000 mg/l	96 h	Scenedesmus subspicatus (new name: Desmodesmus subspicatus)	OECD Guideline 201 (Alga, Growth Inhibition Test)
n-Hexan 110-54-3	EC50	> 1 - 10 mg/l	72 h	nicht spezifiziert	OECD Guideline 201 (Alga, Growth Inhibition Test)

Toxizität (Mikroorganismen):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Expositionsdau er	Spezies	Methode
Ethanol 64-17-5	IC50	> 1.000 mg/l	3 h	activated sludge	OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)
Dimethoxymethan 109-87-5	EC10	3.000 mg/l	17 h		DIN 38412, part 8 (Pseudomonas Zellvermehrungshemm- Test)
Cyclohexan 110-82-7	IC50	29 mg/l	15 h	sonstige:	nicht spezifiziert
Propan-2-ol 67-63-0	EC50	> 1.000 mg/l	3 h	activated sludge	OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)
n-Hexan 110-54-3	EC50	> 1 - 10 mg/l	3 h	nicht spezifiziert	OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)

12.2. Persistenz und Abbaubarkeit

Das Produkt ist biologisch nicht abbaubar.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Testtyp	Abbaubarkeit	Expositions dauer	Methode
Kohlenwasserstoffe, C6-C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	leicht biologisch abbaubar	aerob	98 %	28 d	OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test)
Ethanol 64-17-5	leicht biologisch abbaubar	aerob	80 - 85 %	30 d	OECD Guideline 301 D (Ready Biodegradability: Closed Bottle Test)
Dimethoxymethan 109-87-5	Nicht leicht biologisch abbaubar.	aerob	> 0 - < 60 %	28 d	OECD 301 A - F
Cyclohexan 110-82-7	leicht biologisch abbaubar	aerob	77 %	28 d	OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test)
Propan-2-ol 67-63-0	leicht biologisch abbaubar	aerob	70 - 84 %	30 d	EU Method C.4-E (Determination of the "Ready" BiodegradabilityClosed Bottle Test)
n-Hexan 110-54-3	leicht biologisch abbaubar	aerob	81 %	28 d	OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test)

12.3. Bioakkumulationspotenzial

Keine Daten vorhanden.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

Gefährliche Inhaltsstoffe CAS-Nr.	Biokonzentratio nsfaktor (BCF)	Expositionsda uer	Temperatur	Spezies	Methode
Cyclohexan	167			Pimephales	QSAR (Quantitative Structure
110-82-7				promelas	Activity Relationship)

12.4. Mobilität im Boden

Das Produkt verdunstet leicht.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

Gefährliche Inhaltsstoffe CAS-Nr.	LogPow	Temperatur	Methode
Ethanol 64-17-5	-0,35	24 °C	nicht spezifiziert
Cyclohexan 110-82-7	3,44	25 °C	QSAR (Quantitative Structure Activity Relationship)
Propan-2-ol 67-63-0	0,05		OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake Flask Method)
n-Hexan 110-54-3	4	20 °C	weitere Richtlinien:

12.5. Ergebnisse der PBT- und vPvB-Beurteilung

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

Gefährliche Inhaltsstoffe	PBT / vPvB
CAS-Nr.	
Kohlenwasserstoffe, C6-C7, n-Alkane, Isoalkane, cyclisch, <5% n-Hexan	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB).
Ethanol	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
64-17-5	sehr Bioakkumulativ (vPvB).
Dimethoxymethan	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
109-87-5	sehr Bioakkumulativ (vPvB).
Cyclohexan	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
110-82-7	sehr Bioakkumulativ (vPvB).
Propan-2-ol	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
67-63-0	sehr Bioakkumulativ (vPvB).
n-Hexan	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
110-54-3	sehr Bioakkumulativ (vPvB).

12.6. Endokrinschädliche Eigenschaften

Keine Daten vorhanden

12.7. Andere schädliche Wirkungen

Keine Daten vorhanden.

ABSCHNITT 13: Hinweise zur Entsorgung

13.1. Verfahren der Abfallbehandlung

Entsorgung des Produktes:

Vorschriftsgemäß entsorgen.

Die Vorschriften der Schweizer Technischen Verordnung über Abfälle (TVA; SR814.600) und der Schweizer Verordnung über den Verkehr mit Abfällen (VeVA; SR814.610) müssen eingehalten werden.

Entsorgung ungereinigter Verpackung:

Nach Gebrauch sind Tuben, Gebinde und Flaschen, die noch Restanhaftungen des Produktes enthalten, als Sondermüll zu entsorgen.

Entsorgung der Verpackung gemäß behördlichen Vorschriften.

Abfallschlüssel

14 06 03 - andere Lösemittel und Lösemittelgemische

Die EAK-Abfallschlüssel sind nicht produkt- sondern herkunftsbezogen. Der Hersteller kann daher für die Produkte, die in unterschiedlichen Branchen Anwendung finden, keinen Abfallschlüssel angeben. Die aufgeführten Schlüssel sind als Empfehlung für den Anwender zu verstehen.

ABSCHNITT 14: Angaben zum Transport

14.1. UN-Nummer oder ID-Nummer

ADR 1993 RID 1993 ADN 1993 IMDG 1993 IATA 1993

14.2. Ordnungsgemäße UN-Versandbezeichnung

ADR ENTZÜNDBARER FLÜSSIGER STOFF, N.A.G. (Lösungsmittelnaphtha,Dimethoxymethan)
RID ENTZÜNDBARER FLÜSSIGER STOFF, N.A.G. (Lösungsmittelnaphtha,Dimethoxymethan)
ADN ENTZÜNDBARER FLÜSSIGER STOFF, N.A.G. (Lösungsmittelnaphtha,Dimethoxymethan)

IMDG FLAMMABLE LIQUID, N.O.S. (Solvent naphtha,Dimethoxymethane)

IATA Flammable liquid, n.o.s. (Solvent naphtha, Dimethoxymethane)

14.3. Transportgefahrenklassen

ADR 3 RID 3 ADN 3 IMDG 3 IATA 3

14.4. Verpackungsgruppe

ADR II
RID II
ADN II
IMDG II
IATA II

14.5. Umweltgefahren

ADR Umweltgefährdend RID Umweltgefährdend ADN Umweltgefährdend IMDG Meeresschadstoff IATA Nicht anwendbar

14.6. Besondere Vorsichtsmaßnahmen für den Verwender

ADR Sondervorschrift 640D
Tunnelcode: (D/E)
RID Sondervorschrift 640D
ADN Sondervorschrift 640D
IMDG Nicht anwendbar
IATA Nicht anwendbar

14.7. Massengutbeförderung auf dem Seeweg gemäß IMO-Instrumenten

Nicht anwendbar

ABSCHNITT 15: Rechtsvorschriften

15.1. Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische Rechtsvorschriften für den Stoff oder das Gemisch

Ozon-schädliche Substanzen (ODS) nach Verordnung (EG) Nr. 1005/2009: Nicht anwendbar Dem PIC-Verfahren unterliegenden Chemikalien nach Verordnung (EU) Nr. Nicht anwendbar 649/2012:

Persistente organische Schadstoffe (POPs) nach Verordnung (EU) 2019/1021: Nicht anwendbar

VOC-Gehalt 100,0 %

(VOCV 814.018 VOC-Verordnung

CH)

VOC-Gehalt 100 %

(2010/75/EC)

15.2. Stoffsicherheitsbeurteilung

Eine Stoffsicherheitsbeurteilung wurde nicht durchgeführt.

Nationale Vorschriften/Hinweise (Schweiz):

Allgemeine Hinweise (CH): Dieses Produkt ist für die berufliche Verwendung und darf nicht an die private

Verwenderin abgegeben werden.

ABSCHNITT 16: Sonstige Angaben

Die Kennzeichnung des Produktes ist in Kapitel 2 aufgeführt. Vollständiger Wortlaut aller Abkürzungen im vorliegenden Sicherheitsdatenblatt sind wie folgt:

ED: Stoff besitzt Endokrin-aktive Eigenschaften (Endokrin Disruptor-Eigenschaften)

EU OEL: Stoff mit einem EU-Arbeitsplatzgrenzwert

EU EXPLD 1: Stoff ist im Anhang I der Verordnung (EU) 2019/1148 genannt EU EXPLD 2 Stoff ist im Anhang II der Verordnung (EU) 2019/1148 genannt

SVHC: besonders besorgnis-erregende Substanz (SVHC – substance of very high concern) der Reach

Kanditaten-Liste

PBT: Stoff, der die persistenten, bioakkumulativen und toxischen Kriterien erfüllt

PBT/vPvB: Stoff, der die persistenten, bioakkumulativen und toxischen, sowie die sehr persistenten und

sehr bioakkumulativen Kriterien erfüllt

vPvB: Stoff, der die sehr persistenten und sehr bioakkumulativen Kriterien erfüllt

Sehr geehrter Kunde,

Henkel engagiert sich dafür eine nachhaltige Zukunft zu schaffen, indem wir verschiedene Möglichkeiten entlang der gesamten Wertschöpfungskette fördern. Wenn Sie sich an diesem Vorhaben beteiligen möchten, indem Sie von der Papierzu unserer elektronischen SDB-Übermittlung wechseln, kontaktieren Sie bitte Ihren lokalen Ansprechpartner im Kundendienst. Wir empfehlen dabei als Adressaten eine nicht-personenbezogene E-Mail Adresse wie z.B. SDS@Ihre Firma.com.

Relevante Änderungen werden in diesem Sicherheitsdatenblatt mit senkrechten Linien am linken Rand gezeigt. Entsprechender Text erscheint in einer anderen Farbe und in geschatteten Feldern.